如图,已知在△ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC边上的中线,连接DE.求证:DE=2AM.
题目
如图,已知在△ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC边上的中线,连接DE.求证:DE=2AM.
答案
证明:延长AM到F,使MF=AM,连接BF,CF(如图)
∵BM=CM,AM=FM,
∴四边形ABFC为平行四边形.
∴FB=AC=AE,∠BAC+∠ABF=180°
又∵∠BAC+∠DAE=180°,
∴∠DAE=∠ABF,
又∵AD=AB,
∴△DAE≌△ABF(SAS),
∴DE=AF=2AM.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点