在△ABC中,(a²+b²)sin(A-B)=(a²-b²)sin(A+B),试判断三角形形状

在△ABC中,(a²+b²)sin(A-B)=(a²-b²)sin(A+B),试判断三角形形状

题目
在△ABC中,(a²+b²)sin(A-B)=(a²-b²)sin(A+B),试判断三角形形状
答案
答:
三角形ABC中,(a²+b²)sin(A-B)=(a²-b²)sin(A+B)
移项合并:[sin(A-B)-sin(A+B)]a²=-[sin(A-B)+sin(A+B)]b²
所以:-2a²cosAsinB=-2b²sinAcosB
根据正弦定理有:a/sinA=b/sinB=c/sinC=2R
所以:sin²AcosAsinB=sin²BsinAcosB
因为:sinA>0,sinB>0
所以:sinAcosA=sinBcosB
所以:sin2A=sin2B
所以:2A=2B或者2A+2B=180°
所以:A=B或者A+B=90°
所以:三角形ABC是等腰三角形或者是直角三角形
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.