两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,过M作MH⊥AB于H,求证: (1)平面MNH∥平面BCE; (2)MN∥平面BCE.
题目
两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,过M作MH⊥AB于H,求证:
(1)平面MNH∥平面BCE;
(2)MN∥平面BCE.
答案
证明:(1)在平面ABCD内,∵MH⊥AB,BC⊥AB,∴MH∥BC,
∵MH⊄平面BCE,BC⊂平面BCE,
∴MH∥平面BCE.
∵MH∥BC,
∴
=.
∵AM=FN,AC=FB,∴MC=NB.
∴
=.
∴
=,∴NH∥AF∥BE.
又∵NH⊄平面BCE,BE⊂平面BCE,
∴NH∥平面BCE.
∵MH∩NH=H,
∴平面MNH∥平面BCE.
(2)由(1)可知:平面MNH∥平面BCE.
而MN⊂平面MNH,
∴MN∥平面BCE.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点