求∫L{(x+y)/(x^2+y^2)dx-(x+y)/(x^2+y^2)dy},其中L为圆周x^2+y^2=a^2(按逆时针方向绕行).
题目
求∫L{(x+y)/(x^2+y^2)dx-(x+y)/(x^2+y^2)dy},其中L为圆周x^2+y^2=a^2(按逆时针方向绕行).
这里有个按逆时针方向绕行我就不会做了,
答案
直接用第二型积分的计算公式.
圆的参数方程为x=acost,y=asint,dx=-asintdt,dy=acostdt,
逆时针方向对应的t从0到2pi.代入得
原积分
=积分(从0到2pi) [(acost+asint)*(-asint)-(acost+asint)*(acost)]dt/a^2
=积分(从0到2pi)(-1-2sintcost)dt
=-4pi.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点