如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2). (1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以
题目
如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式.
(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标.
答案
(1)①CP=2t,则PB=14-2t,AQ=4t因为PB∥QA,
所以当PB=QA时四边形PQAB为平行四边形,即有14-2t=4t.
所以
t=s②直线PQ将梯形OABC分成左右两部分的比为1:2,则梯形COQP的面积是梯形OABC面积的
,
∴
(2t+16-4t)×2=
×
(14+16)×2,
即t=3s时,直线PQ分梯形OABC左右两部分的比为1:2
此时P(6,2),Q(4,0)可求得PQ:y=x-4.
(2)设点P的坐标为(m,2),则CP=m.
∵四边形OQPC面积为10,
∴
(m+OQ)•2=10,解得OQ=10-m.
∴Q(10-m,0).
设直线PQ的解析式为y=kx+b,(k≠0),
则
,两式相加得b=1-5k.
∴直线PQ的解析式可表示为y=kx+1-5k.
由于上式中当x=5时,y=1,与k的取值无关,
即不论k取任何满足条件的值,直线PQ必过定点(5,1).
(1)①只要PB=AQ就说明四边形PQAB为平行四边形,由此建立关于t的方程.
②直线PQ将梯形OABC分成左右两部分的比为1:2,则梯形COQP的面积是梯形COAB面积的
.由此建立关于t的方程.
(2)通过设P点坐标,由面积已知可表示Q点坐标,这样可表示出直线PQ的解析式,然后分析解析式找出定点.
一次函数综合题.
掌握平行四边形的判定方法.记住梯形的面积公式.掌握用待定系数法求直线的解析式.对于求定点的问题可用不定的解得到如上题:y=kx+1-5k,则(x-5)k=y-1,与k的取值无关即k有无数个值,所以x-5=0,y-1=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 8.|x+3.2x=16.5
- 春天的土地是温馨的,它使万物萌生;夏天的土地是热烈的,它使生命拔节; 再接一句
- 一个装满油的正方体油桶,棱长6dm,把里面的油倒入一个长8dm,宽6dm,高6dm的长方体油桶中,油深多少分米
- 经济学中的M1,M2,M3分别代表什么?
- 给一些圆柱体、圆锥体的应用题!急
- 50+八分之一x=26这个方程怎么解
- 计算球体积的公式
- 关于梅花的对联 捐献全部积分
- 反思期中考试(语文112,数学116,英语120,
- 设数列{an}的前n项和为sn,点(n,Sn/n)(n属于N)均在函数y=1/2x-1/2的图象上,(1)求数列{an}的通项公式; ...
热门考点