已知抛物线y²=2px的焦点为F 过F的直线与抛物线交与AB两点 A,B在抛物线准线上的射影为A1B1

已知抛物线y²=2px的焦点为F 过F的直线与抛物线交与AB两点 A,B在抛物线准线上的射影为A1B1

题目
已知抛物线y²=2px的焦点为F 过F的直线与抛物线交与AB两点 A,B在抛物线准线上的射影为A1B1
点M是A1B1的中点 若AF=m BF=n 则MF=?
答案
MF=√(mn),本题的解形式不唯一,因为mnp的取值互相制约,需满足(m-p)/m+(n-p)/n=0的条件,mnp里有1个数是多余的条件,p=2mn/(m+n).我只是给了一个比较简单的表达式.










抛物线焦点F(p/2,0),准线L为x=-p/2.


AA1=AF=m,BB1=BF=n,AB=m+n,AB'=m-n.
所以A1B1=BB'=√(AB²-AB'²)=√((m+n)²-(m-n)²)=2√(mn),故A1M=B1M=√(mn).


先说一个比较巧的几何学方法:


BM=√(MB1²+B1B²)=√(n²+mn),同理AM=√(m²+mn),


因为BM=√(n(n+m))=√(BF×AB),因此BM/BF=AB/BM,所以三角形FMB和三角形AMB相似.


所以MF=MB/AB×AM=√(n(n+m))/(n+m)×√(m(n+m))=√(mn).


我图画的不好,实际上MF和AB垂直,AM和MB垂直.


下面是另一个比较硬算的方法:


点N为AB中点,则FN=AF-AN=m-(m+n)/2=(m-n)/2.



M的y坐标=FNsin(FNM)=FNsin(BAB')=(m-n)/2×2√(mn)/(m+n)=(m-n)√(mn)/(m+n).


sin(BFO)=(FL-BB1)/FB=(p-n)/n,同理sin(AFx)=(AA1-FL)/FA=(m-p)/m,因为角度相等,得
(p-n)n+(p-m)/m=0,得p=2mn/(m+n).


所以由勾股定理,因为F到准线距离为p=2mn/(m+n)已知,则


MF=√(p²+mn(m-n)²/(m+n)²)=√(4m²n²/(m+n)²+mn(m-n)²/(m+n)²)=√((mn)(4mn+(m-n)²)/(m+n)²)
=√((mn)(m+n)²/(m+n)²)=√(mn).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.