问一下∫1/cos(2x)dx如何积分

问一下∫1/cos(2x)dx如何积分

题目
问一下∫1/cos(2x)dx如何积分
如题
能不能给我解法?我这里∫ 1/cos(nx)dx答案是(1/n)(ln|cos(nx/2)-sin(nx/2)|-ln|sin(nx/2)+cos(nx/2)|)+c,这怎么解出来的?
答案
1/cos(nx) = 1/(cos²(nx/2) - sin²(nx/2))
= (1/2)((cos(nx/2) - sin(nx/2))/(cos(nx/2) + sin(nx/2)) - (-cos(nx/2) - sin(nx/2))/(cos(nx/2) - sin(nx/2)))
∫(cos(nx/2) - sin(nx/2))/(cos(nx/2) + sin(nx/2))dx
=(2/n)∫(1/t)dt (令(cos(nx/2) + sin(nx/2)=t)
=(2/n)ln|t|
=(2/n)ln|cos(nx/2) + sin(nx/2)| + C1
同理
∫(-cos(nx/2) - sin(nx/2))/(cos(nx/2) - sin(nx/2))dx
=(2/n)ln|cos(nx/2) - sin(nx/2)| + C2
∫1/cos(nx)dx = ∫1/(cos²(nx/2) - sin²(nx/2))dx
= ∫(1/2)((cos(nx/2) - sin(nx/2))/(cos(nx/2) + sin(nx/2)) - (-cos(nx/2) - sin(nx/2))/(cos(nx/2) - sin(nx/2)))dx
=(1/2)((2/n)ln|cos(nx/2) + sin(nx/2)| - (2/n)ln|cos(nx/2) - sin(nx/2)|) + C
=(1/n)(ln|cos(nx/2) + sin(nx/2)| - ln|cos(nx/2) - sin(nx/2)|) + C

问题补充:能不能给我解法?我这里∫ 1/cos(nx)dx答案是(1/n)(ln|cos(nx/2)-sin(nx/2)|-ln|sin(nx/2)+cos(nx/2)|)+c,这怎么解出来的?
验证一下不就知道了,
(1/n)(ln|cos(nx/2)-sin(nx/2)|-ln|sin(nx/2)+cos(nx/2)|)+c
求导 = (1/n)(n/2)
((-sin(nx/2)-cos(nx/2))/(cos(nx/2)-sin(nx/2))
- (cos(nx/2)-sin(nx/2))/(sin(nx/2)+cos(nx/2)))
=(1/2)(-2)/(cos²(nx/2) - sin²(nx/2))
= -1/cos(nx)
所以答案错了
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.