求助一道圆锥曲线题

求助一道圆锥曲线题

题目
求助一道圆锥曲线题
双曲线C:X^2/a-Y^2/b=1 (a >0,b>0)
若曲线C 为等轴双曲线,F1 、F2为曲线C 的两个焦点,且点P在曲线C 上.试
证明 向量OP的平方*cos∠F1 P F2 =向量F1P * 向量F2P
答案
向量F1P * 向量F2P=F1P*F2Pcos∠F1 P F2
则要证向量OP的平方*cos∠F1 P F2 =向量F1P * 向量F2P
即证向量OP的平方=F1P*F2P
因为曲线C 为等轴双曲线,则a=b
我们可令a=b=1
即X^2-Y^2=1
然后将P点做设起来就可以了
自己算吧
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.