证明无论n取何整数,n(n+1)(n+2)(n+3)一定不是完全平方数

证明无论n取何整数,n(n+1)(n+2)(n+3)一定不是完全平方数

题目
证明无论n取何整数,n(n+1)(n+2)(n+3)一定不是完全平方数
答案
反证法:假设无论n取何整数,n(n+1)(n+2)(n+3)一定是完全平方数 则n(n+3)=(n+1)(n+2) (即两组数乘积相等) 0=3 所以原假设不成立 所以无论n取何整数,n(n+1)(n+2)(n+3)一定不是完全平方数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.