证明:设三角形的外接圆半径为R,则a=2RsinA,b=2RsinB,c=2RsinC

证明:设三角形的外接圆半径为R,则a=2RsinA,b=2RsinB,c=2RsinC

题目
证明:设三角形的外接圆半径为R,则a=2RsinA,b=2RsinB,c=2RsinC
写钝角三角形的解法,
直角锐角的不用.
答案
三角形的∠A>90°
作直径过B交圆另一点于D.连CD
∠D=180°-∠A,∠DCB=90°
a=BC=BD*sinBDC=2Rsin(180-∠A)=2RsinA
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.