如图,在△ABC中,∠A=90°,AC⊥CE,且BC=CE,过E作BC的垂线,交BC延长线于点D.求证:AB=CD.

如图,在△ABC中,∠A=90°,AC⊥CE,且BC=CE,过E作BC的垂线,交BC延长线于点D.求证:AB=CD.

题目
如图,在△ABC中,∠A=90°,AC⊥CE,且BC=CE,过E作BC的垂线,交BC延长线于点D.求证:AB=CD.
答案
证明:∵ED⊥BD,
∴∠D=90°=∠A;
∴∠E+∠ECD=90°;
又∵AC⊥CE,
∴∠ACB+∠ECD=90°;
∴∠ACB=∠E;
在△ABC和△DCE中,
∠A=∠D
∠ACB=∠E
BC=CE

∴△ABC≌△DCE.
∴AB=CD.
据已知只要证得△ABC≌△DCE即可得结论AB=CD,已知∠A=∠D=90°,BC=BE,只要证得∠ACB=∠E,问题即可得解.

全等三角形的判定与性质.

本题主要考查三角形全等的判定,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.