过原点作圆x^2+y^2-12x=0的弦,则弦的中点的轨迹方程
题目
过原点作圆x^2+y^2-12x=0的弦,则弦的中点的轨迹方程
答案
x^2+y^2-12x=0
化成标准形式:(x-6)^2+y^2=36
知圆心A(6,0) 过圆心A(6,0)作弦的垂线
由垂径定理 垂足是弦的中点P
且OP垂直PA
所以P在以OA为直径的圆上:(x-3)^2+y^2=9
再求取值范围:考虑过O直线与 x^2+y^2-12x=0 相切时
点O在圆上 切线x=0
所以弦的中点P轨迹::(x-3)^2+y^2=9 除去原点
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点