在边长为2的正方形ABCD中,P为AB中点,Q为边CD上一动点,设DQ=t,线段PQ的垂直平分线分别交边AD、BC与点M、N,过Q做QE垂直于AB于点E,过M作MF垂直于BC与点F.顺次连接P、M、Q
题目
在边长为2的正方形ABCD中,P为AB中点,Q为边CD上一动点,设DQ=t,线段PQ的垂直平分线分别交边AD、BC与点M、N,过Q做QE垂直于AB于点E,过M作MF垂直于BC与点F.顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
答案
证明:(1)∵四边形ABCD是正方形,∴∠A=∠B=∠D=90°,AD=AB,∵QE⊥AB,MF⊥BC,∴∠AEQ=∠MFB=90°,∴四边形ABFM、AEQD都是矩形,∴MF=AB,QE=AD,MF⊥QE,又∵PQ⊥MN,∴∠EQP=∠FMN,又∵∠QEP=∠MFN=90°,∴△PEQ≌△NFM...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点