无论abc为任何实数,多项式b²(a²+1)-2b(a+c)+1+c²的值不为负数,请证明
题目
无论abc为任何实数,多项式b²(a²+1)-2b(a+c)+1+c²的值不为负数,请证明
无论abc为任何实数,多项式b无论abc为任何实数,多项式b²(a²+1)-2b(a+c)+1+c²的值不为负数,请证明
这个符号²表示平方
答案
b²(a²+1)-2b(a+c)+1+c²
=b^2a^2-2ba+1+b^2-2bc+c^2
=(ab-1)^2+(b-c)^2
≥0
所以,无论abc为任何实数,多项式b²(a²+1)-2b(a+c)+1+c²的值不为负数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点