定义在R上的函数f(x)的图象既关于点(1,1)对称,又关于点(3,2)对称,则f(0)+f(2)+f(4)+…+f(14)=( ) A.16 B.24 C.32 D.48
题目
定义在R上的函数f(x)的图象既关于点(1,1)对称,又关于点(3,2)对称,则f(0)+f(2)+f(4)+…+f(14)=( )
A. 16
B. 24
C. 32
D. 48
答案
定义在R上的函数f(x)的图象既关于点(1,1)对称,又关于点(3,2)对称,过点(1,1)、点(3,2)的直线方程为 y-12-1=x-13-1,即y=12(x+1),显然函数f(x)=12(x+1)满足题中条件,∴f(0)+f(2)+f(4)+...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点