关于x的实系数方程x^2+ax+2b=0的一根在区间(0,1)上,另一根在(1,2)上,则点(a,b)所在区域的面积多
题目
关于x的实系数方程x^2+ax+2b=0的一根在区间(0,1)上,另一根在(1,2)上,则点(a,b)所在区域的面积多
答案
设f(x)=x^2+ax+2b
f(x)=0的一个根在(0,1)中,另一个根在(1,2)中
则f(0)>0,f(1)0
即2b>0,1+a+2b0
b>0,b
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点