设A是3阶实对称矩阵,秩为2,若A^2=A,则A的特征值为?

设A是3阶实对称矩阵,秩为2,若A^2=A,则A的特征值为?

题目
设A是3阶实对称矩阵,秩为2,若A^2=A,则A的特征值为?
答案
设λ是A的特征值
则 λ^2-λ 是A^2-A 的特征值
而 A^-A=0,零矩阵的特征值只能是0
所以 λ^2-λ=0
所以 λ=0 或 1
即 A 的特征值只能是0,1
又由已知A是实对称矩阵,故A可对角化,对角线元素由0,1组成
再由 r(A)=2,所以 A 的特征值为 1,1,0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.