在矩形ABCD中,已知AB=3AD,E,F为AB的两个三等分点,AC,DF交於点G建立适当的直角坐标系,证明:EG垂直DF

在矩形ABCD中,已知AB=3AD,E,F为AB的两个三等分点,AC,DF交於点G建立适当的直角坐标系,证明:EG垂直DF

题目
在矩形ABCD中,已知AB=3AD,E,F为AB的两个三等分点,AC,DF交於点G建立适当的直角坐标系,证明:EG垂直DF
答案
这个不需要建立直角坐标系,设AB=3a,AD=1a
首先,三角形AGF∽三角形CGD
FG:DG=AF:DC=2:3
因为FG+DG=FD=根号5a
所以FG=(2/5)根号5a
所以FG:AF=1:根号5
EF:DF=1:根号5
因为FG:AF=EF:DF
∠AFD=∠GFE(公共角)
所以三角形AFD∽三角形GFE
所以∠EGF=∠DAF=90°
所以EG垂直DF
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.