求级数∑(1+1/2+…+1/n)/(n+1)(n+2)的和
题目
求级数∑(1+1/2+…+1/n)/(n+1)(n+2)的和
答案
1.化简通项un
un=(1+1/2+…+1/n)/[(n+1)*(n+2)]
=[1/(n+1)-1/(n+2)]*(1+1/2+…+1/n)
2.求前n项部分和Sn
Sn=(1/2-1/3)*1+(1/3-1/4)*(1+1/2)+(1/4-1/5)*(1+1/2+1/3)+...
+[1/n-1/(n+1)]*[1+1/2+…+1/(n-1)]
+[1/(n+1)-1/(n+2)]*(1+1/2+…+1/n)
=1/2+1/3*1/2+1/4*1/3+...+1/(n+1)*1/n-1/(n+2)*(1+1/2+…+1/n)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+[1/n-1/(n+1)]-1/(n+2)*(1+1/2+…+1/n)
=1-1/(n+1)-1/(n+2)*(1+1/2+…+1/n)
3.求极限lim{n→∞}Sn
利用欧拉常数C=lim{n→∞}[(1+1/2+…+1/n)-lnn],得
lim{n→∞}[(1+1/2+…+1/n)-lnn]/(n+2)
=lim{n→∞}[(1+1/2+…+1/n)-lnn]*lim{n→∞}1/(n+2)
=C*0
=0
故lim{n→∞}(1+1/2+…+1/n)/(n+2)=lim{n→∞}lnn/(n+2)=0 (洛必达法则)
因此,级数的和
S=lim{n→∞}Sn
=lim{n→∞}[1-1/(n+1)-1/(n+2)*(1+1/2+…+1/n)]
=1-lim{n→∞}1/(n+1)-lim{n→∞}(1+1/2+…+1/n)/(n+2)
=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 一般现在时,现在进行时,一般过去时肯,否,疑各10句
- 2的9999999次方
- 英语翻译
- 有丝分裂后期染色体组数发生变化了吗
- 被除数除以除数商是四又三分之一,被除数增加7后商是5,被除数,除数是多少?不要方程!
- 把一个底面积6平方厘米圆锥,完全侵入底面积是12平分厘米的圆柱形水箱中,水面上升2厘米,圆锥高是多少?
- The flower show held last month was a great success
- 初一下学期生物心脏部分概念
- y=5x方+6x 配方法
- ----Have a good day ,Mum -----Thanks .______ 该怎么作答