设f(x)=ax2+bx+c,若f(1)=7/2,问是否存在a、b、c∈R,使得不等式x2+1/2≤f(x)≤2x2+2x+3/2对一切实数x都成立,证明你的结论.
题目
答案
由f(1)=72,得a+b+c=72.令x2+12=2x2+2x+32⇒x=-1.由f(x)≤2x2+2x+32推得f(-1)≤32,由f(x)≥x2+12推得f(-1)≥32,∴f(-1)=32.∴a-b+c=32.故a+c=52且b=1.∴f(x)=ax2+x+52-a.依题意ax2+x+52-a≥x2...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点