若函数f(x)是奇函数,且在(-1,1)上单调递增,f(-1)=1,f(x)在(-1,1)上的最大值是1,若(x )≤t²-2at+1对所
题目
若函数f(x)是奇函数,且在(-1,1)上单调递增,f(-1)=1,f(x)在(-1,1)上的最大值是1,若(x )≤t²-2at+1对所
∈[-1,1]及a∈[-1,1]都成立,则t的取值范围是多少
答案
若函数f(x)是奇函数,——>f(x)=f(-x)且在(-1,1)上单调递增,——>【说明f(x)|x->-1 在(-1,1){不包括端点}内数值最小,f(x)|x->1 在(-1,1)内数最大】f(-1)=1,——>,由第一个条件可知 :f(1)=-f(-1)=-1{这里可以知道...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点