若非零函数f(x)对任意实数a、b均有f(a+b)=f(a)xf(b),且当x1.1、求证f(x)>0
题目
若非零函数f(x)对任意实数a、b均有f(a+b)=f(a)xf(b),且当x1.1、求证f(x)>0
2、求证f(x)为减函数
3、当f(4)=1/16时,解不等式f(x-3)f(5)
答案
1证:令a>0∵f(a+0)=f(a)f(0)∴f(0)=1=f(a-a)=f(a)f(-a)∵f(-a)>1∴0bf(a)-f(b)=f[(a+b)/2+(a-b)/2]-f[(a+b)/2-(a-b)/2]=f[(a+b)/2]{f[(a-b)/2-f[-(a-b)/2]}∵f[(a-b)/21∴{f[(a-b)/2-f[-(a-b)/2]}
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点