已知:如图,D,E,F分别是△ABC各边上的点,且DE∥AC,DF∥AB.延长FD至点G,使DG=FD,连接AG. 求证:ED和AG互相平分.

已知:如图,D,E,F分别是△ABC各边上的点,且DE∥AC,DF∥AB.延长FD至点G,使DG=FD,连接AG. 求证:ED和AG互相平分.

题目
已知:如图,D,E,F分别是△ABC各边上的点,且DE∥AC,DF∥AB.延长FD至点G,使DG=FD,连接AG.
求证:ED和AG互相平分.
答案
证明:∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴AE=DF,
∵DG=FD,
∴AE=DG,
∵DF∥AB,
∴∠G=∠EAG,∠GDE=∠AED,
在△AEO和△GDO中
∠G=∠OAE
DG=AE
∠GDO=∠AEO

∴△AEO≌△GDO,
∴OE=0D,OA=OG,
即ED和AG互相平分.
根据平行四边形的判定得出平行四边形AEDF,推出AE=DF=DG,根据平行线的性质推出∠G=∠EAO,∠AEO=∠GDO,根据ASA证△AEO≌△GDO即可.

平行四边形的判定与性质;平行线的性质;全等三角形的判定与性质.

本题考查了平行四边形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点的运用,关键是求出OA=OG,OE=OD,题目较好,难度不大,证明方法不止一个:也可证四边形AEGD是平行四边形.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.