高一几何证明题

高一几何证明题

题目
高一几何证明题
在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,M,N分别是AB,PC的中点,PA=AD=a.
求证:平面PMC垂直于平面PCD
答案
∵PA⊥CD AD⊥CD ∴CD⊥BD 取CD中点E,连接MN ME NE,∴NE‖PD ME‖AD
∴NE⊥CD ME⊥CD ∴CD⊥面EMN ∴CD⊥MN ∵AM=BM PA=AD=BC ∠PAM=∠MBC ∴△PAM≌△MBC ∴PM=MC ∴MN⊥PC ∴MN⊥面PCD ∴面PMC⊥面PCD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.