设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并求A^-1+B^-1的逆阵,

设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并求A^-1+B^-1的逆阵,

题目
设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并求A^-1+B^-1的逆阵,
答案
由A,B可逆知 A^-1+B^-1 = A^-1(A+B)B^-1
由已知 A+B可逆,所以 A^-1+B^-1 可逆 (可逆矩阵的乘积仍可逆)
且(A^-1+B^-1)^-1 = [A^-1(A+B)B^-1]^-1 = B(A+B)^-1A
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.