已知函数f(x)=-x^2+ln(1+2x),设b>a>0,证明:ln(a+1)/b+1>(a-b)(a+b+1)

已知函数f(x)=-x^2+ln(1+2x),设b>a>0,证明:ln(a+1)/b+1>(a-b)(a+b+1)

题目
已知函数f(x)=-x^2+ln(1+2x),设b>a>0,证明:ln(a+1)/b+1>(a-b)(a+b+1)
答案
证明:∵b>a>0,∴a+1>1,则ln(a+1)>0,b+1>0,a+b+1>0.即ln(a+1)/b+1>0,而(a-b)(a+b+1)<0.∴ln(a+1)/b+1(a-b)(a+b+1).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.