多项式(x²+mx+n)(x²-4x)展开后不含x和x²项,试求m、n的值

多项式(x²+mx+n)(x²-4x)展开后不含x和x²项,试求m、n的值

题目
多项式(x²+mx+n)(x²-4x)展开后不含x和x²项,试求m、n的值
答案
(x²+mx+n)(x²-4x)
=x^4-4x^3+mx^3-4mx^2+nx^2-4nx
=x^4+(m-4)x^3+(n-4m)x^2-4nx
不含x和x²项
则(n-4m)=0和4n=0
则m=0,n=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.