最好是大学数学难题!要很难那种
题目
最好是大学数学难题!要很难那种
答案
首先有个一般的定理:只要是计算limf(x)^g(x)次方型(幂指函数)的极限(x的变化趋势没有限制),条件满足在x的变化趋势下f(x)→1,g(x)→∞(即1的∞次方型),那么limf(x)^g(x)=e^(limf(x)×g(x))
(这个定理用罗比搭法则和等价无穷小量求极限的方法很容易推得)
因而本题:因为 lim(2sinx+cosx)×(1/x)=2
x→0
所以:原式=e^2
先求ln[(2sinx+cosx)^(1/x)]=ln(2sinx+cosx)/x在0处的极限
应用洛必打法则(0/0型,分子分母同时求导)
lim ln(2sinx+cosx)/x= lim (2cosx-sinx)/(2sinx+cosx)=2
x→0 x→0
所以原式答案是e²
1.请问有多少种排列法.当1,2,3,.到n个数,(除了第一个..)每一个整数都必须和它左边的一些数相差一个整数.( 不管大一个整数或小一整数.不管中间间隔多远)
2.请问有多少种4n字母的排列法,而每个字母必须和相同的在一起.(4n指n种字母,每种4个.)比方说,n=3那就是有12 个字母,4A,4B,4C...
3.有多少组,从1到n,当一组里包含的3个整数的合可以整除3?比方说:1,2,3=6/3=2--这就是一组...
4.收集了2n 个球,有n个是不同的,剩下的n 个球是完全一样的,还可以收集多少种不一样的n球?
3.有多少组,从1到n,当一组里包含的3个整数的合可以整除3?比方说:1,2,3=6/3=2--这就是一组...
n/3=x.y
y=0 =>a=0,b=0
y=1 =>a=1,b=0
y=2 =>a=1,b=0
组合为,3个余1的数,3个余2的数,3个余0的数p(x,3)+p(x+a,3)+p(x+b,3).再加上,余1余2余3的数个一个p(x,1)+p(x+a,1)+p(x+b,1)
也就是p(x,3)+p(x+a,3)+p(x+b,3)+p(x,1)+p(x+a,1)+p(x+b,1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 一动点P到互相垂直平分的两线段AB,CD的端点的连线满足|PA
- 求过点M(0.2.4),且与两个平面∏1和∏2都平行的直线方程.其中∏1:X+Y-2Z-1=0 ∏2:X+2Y-Z+1=0
- 比较X2+Y2+1与X+Y+XY的大小(X和Y都是实数)
- 为什么先把水降温,不要动它,让它进入过冷状态,然后拿起震荡下(总之另它动一下),它就会立刻变成冰
- 用动词写的作文
- 一米的五分之一和三米的五分之三那个多
- “梦的最远端”英文怎么讲?
- 轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.
- 深沉的思考,这个意思的词语
- 某化肥厂用氨氧化法制备HNO3,已知有NH3制备HNO3时,NH3的转化率为92%,则1吨NH3能制得多少吨50%的HNO3?
热门考点