设函数f(x)=x2+bx+c, x≤02, x>0,若f(-4)=f(0),f(-2)=-2,则函数g(x)=f(x)-x的零点个数为_.
题目
设函数
f(x)=,若f(-4)=f(0),f(-2)=-2,则函数g(x)=f(x)-x的零点个数为______.
答案
由f(-4)=f(0)得16-4b+c=c,解得b=4.又f(-2)=-2,即4-8+c=-2,解得c=2.
所以
f(x)=,由g(x)=0,得f(x)=x,在同一个坐标系中,分别作出函数y=f(x),y=x图象,
如图:由图象可知两图象有三个交点,所以函数g(x)=f(x)-x的零点个数为3个.
故答案为:3
由条件f(-4)=f(0),f(-2)=-2,求出b,c的值,由g(x)=0,得f(x)=x,然后作出两个函数的图象,观察交点个数,即可以求出零点个数.
根的存在性及根的个数判断.
本题考查利用待定系数法求二次函数解析式以及函数与方程中的求函数零点问题,这类问题一般是将函数分解为两个基本初等函数,然后分别作出它们的图象,通过观察两个图象的交点个数,即是所求函数的零点个数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- what does Mrs Green buy fruit for?
- 缩写的单词 中文意思
- 证明:设f(x)是[0,n]上的连续函数,f(0)=f(n)(n为自然数),那么在(0,n)内至少存在一点ξ,使f(ξ+1)=f(ξ)
- 下列有关染色体,DNA,基因的关系错误的是?
- 谁有描写触觉的诗句
- 求用英语描述大学校园
- 库仑定律的题目
- there are three traffic lightsred means stop为什么要大写
- KCLO3制氧气的化学式
- 求(1)y=x^2*(5-x) ,(2)y=x*(5-x)^2 ,x全属于(0,5)的最大值
热门考点