设{an}为一单调增数列,并且有一子列收敛于a,证明:{an}的极限为a

设{an}为一单调增数列,并且有一子列收敛于a,证明:{an}的极限为a

题目
设{an}为一单调增数列,并且有一子列收敛于a,证明:{an}的极限为a
答案
设数列{an}的子列{a(kn)} (n为k的下标)收敛于a,则对任意的s>0,存在N,使得对任意m>n>N,有
|a(kn)-a|N+1)时
|an-a|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.