高等代数--证明--在数域p上,任意一个对称矩阵都合同于一个对角阵

高等代数--证明--在数域p上,任意一个对称矩阵都合同于一个对角阵

题目
高等代数--证明--在数域p上,任意一个对称矩阵都合同于一个对角阵
在复数域上证明.不仅仅是实数域.
答案
用矩阵分块来证明.
A=[a11 aT]
[a A1]
取P为[1 -a11aT]
[0 I ]
则PTAP=[a11 0]
[0 B] B=A1-a11(-1)aaT
重复讨论n-1方阵B即可
或者用二次型化标准型方法得到A的有理相合标准型也可以证
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.