已知∠A为定角,P,Q分别在∠A的两边上,PQ为定长,当P,Q处于什么位置是三角形APQ的面积最大
题目
已知∠A为定角,P,Q分别在∠A的两边上,PQ为定长,当P,Q处于什么位置是三角形APQ的面积最大
答案
设AP=x,AQ=y,则PQ^2=x^2+y^2-2xycosA≥2xy-2xycosA=2xy(1-cosA)
xy≤PQ^2/(2(1-cosA))
三角形APQ的面积=(1/2)*xysinA≤PQ^2*sinA/(4(1-cosA))
当x=y时三角形APQ的面积最大,即AP=AQ时.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点