多项式f(x)除以x^4+x^2+1所得的余式为x^3+2x^2+3x+4,证明f(x)除以x^2+x+1所得的余式为x+3
题目
多项式f(x)除以x^4+x^2+1所得的余式为x^3+2x^2+3x+4,证明f(x)除以x^2+x+1所得的余式为x+3
答案
设:f(x)=M(x^4+x²+1)+(x³+2x²+3x+4)
因为:x^4+x²+1=(x²+1)²-x²=(x²+x+1)(x²-x+1),即:x^4+x²+1可以被x²+x+1整除
x³+2x²+3x+4=x(x²+x+1)+(x²+x+1)+(x+3),即x³+2x²+3x+4除以x²+x+1的余式是x+3
所以f(x)除以x²+x+1的余式是x+3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点