如图,四棱锥P-ABCD的底面是边长为a的菱形,∠ABC=60°,PC⊥平面ABCD,PC=a,E为PA中点, (1)求证:平面EDB⊥平面ABCD; (2)求点E到平面PBC的距离.

如图,四棱锥P-ABCD的底面是边长为a的菱形,∠ABC=60°,PC⊥平面ABCD,PC=a,E为PA中点, (1)求证:平面EDB⊥平面ABCD; (2)求点E到平面PBC的距离.

题目
如图,四棱锥P-ABCD的底面是边长为a的菱形,∠ABC=60°,PC⊥平面ABCD,PC=a,E为PA中点,

(1)求证:平面EDB⊥平面ABCD;
(2)求点E到平面PBC的距离.
答案
(1)证明:连接AC与BD相交于O,连接EO,则EO∥PC,因为PC⊥平面ABCD,
所以EO⊥平面ABCD,
又EO⊂平面EDB,
所以平面EDB⊥平面ABCD;
(2)在底面作OH⊥BC,垂足为H,
因为平面PCB⊥平面ABCD,
所以OH⊥平面PCB,
又因为OE∥PC,
所以OE∥平面PBC,
所以点E到平面PBC的距离就是点O到平面PBC的距离OH,解得OH=
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.