在三角形abc中,sin(a-b)=1/5,sinc=3/5,求证tana=2tanb
题目
在三角形abc中,sin(a-b)=1/5,sinc=3/5,求证tana=2tanb
答案
sinc=sin(a+b)=sinacosb+sinbcosa=3/5
sin(a-b)=sinacosb-sinbcosa=1/5
所以sinacosb=2/5,sinbcosa=1/5;sinacosb/sinbcosa=2
同除以cosacosb,得tana/tanb=2 即tana=2tanb
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点