tan(arcsin(1/3)+arccos(-1/5))求值
题目
tan(arcsin(1/3)+arccos(-1/5))求值
答案
设sina=1/3 cosb=-1/5
则cosa=√(1-sin²a)=2√2/3
sinb=√(1-cos²b)=2√6/5
所以tana=sina/cosa=√2/4
tanb=sinb/cosb=-2√6
故tan(arcsin(1/3)+arccos(-1/5))
=tan(a+b)
=(tana+tanb)/(1-tana*tanb)
=(√2/4-2√6)/(1+√2/4*2√6)
=(√2-8√6)/(4+4√3)
=(9√6-25√2)/8
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点