设三阶方阵A满足(A+E)3=0,求矩阵A的全部特征值,其中E为三阶单位矩阵.

设三阶方阵A满足(A+E)3=0,求矩阵A的全部特征值,其中E为三阶单位矩阵.

题目
设三阶方阵A满足(A+E)3=0,求矩阵A的全部特征值,其中E为三阶单位矩阵.
答案
设k是A的特征值,a是k对应的特征向量(a不等于零向量).则Aa=ka
因为(A+E)^3=0
即A^3+3A^2+3A+E=0
在上式两边同时右乘a得:
k^3a+3k^2a+3ka+a=0
即(k^3+3k^2+3k+1)a=0
(k+1)^3a=0
因为a不是零向量,所以(k+1)^3=0
所以k=-1(3重的特征向量)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.