关于初3圆的证明题
题目
关于初3圆的证明题
1.已知:如图,矩形ABCD的对角线交于点O.
求证:A,B,C,D 四点都在以点O位圆心,OA长为半径的圆上.
2.如图,AB是⊙ O 的直径,CD是⊙ O的弦,AB,CD的延长线交于点E.已知AB=2DE,∠E=18°,求∠AOC的度数.
答案
1.证明:∵ABCD是矩形,对角线相互平分∴OA=OC,OB=OD
RT△ABC中,∵OA=OC=1/2AC∴OB=1/2AC.
OA=OB=OC.
∵OB=OD∴OA=OB=OC=OD
因此这四点都在以O为圆心,OA为半径的圆上.
2.连接OD
∵AB是直径,OC、OD是半径,∴OC=OD=1/2AB且AB=2DE,∴OD=DE.
△ODE是等腰三角形,∠BOD=∠E=18°
∵∠ODC是△ODE外角,∴∠ODC=∠BOD+∠E=36°
△OCD是等腰三角形,∴∠OCE=∠ODC=36°
∵∠AOC是△OCE外角,∴∠AOC=∠E+∠OCE=54°
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点