f(x)=cos(2arccosx)+4sin(arcsinx/2)的最值

f(x)=cos(2arccosx)+4sin(arcsinx/2)的最值

题目
f(x)=cos(2arccosx)+4sin(arcsinx/2)的最值
答案
f(x)=cos(2arccosx)+4sin[arcsin(x/2)]
= 2[cos(arccosx)]^2 - 1 + 4 * (x/2)
= 2x^2 -1 + 2x
= 2x^2 + 2x - 1
= 2(x^2 + x) - 1
= 2(x^2 + x + 1/4 - 1/4) - 1
= 2[(x + 1/2)^2 - 1/4] - 1
= 2(x + 1/2)^2 - 3/2
x 的定义域为 [-1,1]
因此
当 x = -1/2 时,f(x)取最小值 -3/2
当 x = 1 时,f(x) 取最大值 3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.