已知函数f(x)=ax^2+bx+c中,a+b+c=0,a>b>c.若存在x属于R,使ax^2+bx+c=0成立.试判断f(x+3)的符号.当b不
题目
已知函数f(x)=ax^2+bx+c中,a+b+c=0,a>b>c.若存在x属于R,使ax^2+bx+c=0成立.试判断f(x+3)的符号.当b不
等于0时,证明关于x的方程ax^2+bx+c+a=0在区间(c/a,0)和(0,1)内各有一个实根.
答案
因为a>b>c,
所以3a>a+b+c=0,3c<a+b+c<0
即 a>0,c<0
ax^2+bx+c=0成立,
△=b²-4ac
=(a+c)²-4ac
=(a-c)²>0
所以x=(-b±√△)/2a
2ax=-b±(a-c)
f(x+3)=a(x+3)²+b(x+3)+c
=(ax²+bx+c)+6ax+9a+3b
=3(2ax+3a+b)
=3【-b±(a-c)+3a+b】
=3[3a±(a-c)]
=3(2a+c)或3(4a-c)
因为2a+c>a+b+c=0,4a-c>3a>0
所以f(x+3)符号为正
2)我与团队里的几个人讨论了一下后,都觉得题目有一定问题
应该改成“当b不等于0时,证明关于x的方程ax^2+bx+c+a=0若有实根,则在区间(c/a,0)和(0,1)内各有一个实根.
证:因为关于x的方程ax^2+bx+c+a=0有实根
△=b²-4a(a+c)≥0得
b²+4ab≥0,
b(b+4a)
=b(a+b+3a)
=b(3a-c) ≥0
因为3a-c>0所以b≥0,
又b≠0所以b>0
令g(x)=ax²+bx+a+c
则g(c/a)=a(a/c)²+b(a/c)+a+c=(c²+bc+a²+ac)/a=[c²+c(-a-c)+a²+ac]/a=a>0
而g(0)=a+c=-b0
所以g(x)两个零点分别在(c/a,0)和(0,1)内,即ax^2+bx+a+c=0两根分别在(c/a,0)和(0,1)内
由于b的符号原本不定,所以原题有一定问题
【数学爱好者竭诚为你解答】
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- she helps ( ) to send leetters once a week. A they B their C them 快!
- I became a teacher four years ago.(改为同义句)I ____ ____ a teacher ____ four years .
- 计算二次积分∫dy∫e^(x^2)dx,主要是转换积分顺序时的步骤.
- 以How I Learned to Learn English为题
- catia 怎么设置点捕捉?
- an等于Sn-S(n-1),这个公式,不是等差数列也能用吗?
- 如图,在梯形ABCD中,AD//CD,E为AB的中点,且EF//BC,线段DF和线段FC有什么关系,为什么?
- Do you want to know how did I to spend the vacation 这句子对吗?有错误请指出,
- Foulsham House is a fine.请高手翻译全句.is a fine
- 大小两个圆,大圆直径是6.4cm,小圆的半径是0.4cm,小圆的面积是大圆面积的几分之几