知x,y,z都是正实数,且x+y=xy,x+y+z=xyz,则z的最大值是?
题目
知x,y,z都是正实数,且x+y=xy,x+y+z=xyz,则z的最大值是?
答案
由x+y+z=xyz得,xy+z=xyz,
所以z=1+1/(xy-1),
∵x>0,y>0
∴x+y≥2√xy
即x+y=xy≥2√xy
解得:xy≥4(当且仅当x=y=2时,取等号)
那么 z≤1+1/(4-1)=4/3
z≤4/3
那么z(max)=4/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点