任意三角形ABC中,AD为高,P为AD上任意一点,连接BP、CP分别交AC于E、F,求证∠FDP=∠EDP
题目
任意三角形ABC中,AD为高,P为AD上任意一点,连接BP、CP分别交AC于E、F,求证∠FDP=∠EDP
急求,好的加分、
答案
证明:
过A作BC的平行线,分别交CF、DF、DE、BE的延长线于G、M、N、H
因为GH//BC
所以AM/BD=AF/FB=AG/BC,
所以AM=BD*AG/BC
因为AN/CD=AE/EC=AH/BC
所以AN=CD*AH/BC
所以AM/AN=BD*AG/CD*AH
因为AH/BD=PA/PD=AG/CD
所以BD*AG=CD*AH
所以AM/AN=1
所以AM=AN
因为AD⊥BC,MN//BC
所以AD⊥MN
所以∠MAD=∠NAD
又因为AD=AD
所以△ADM≌△ADN
所以∠ADM=∠ADN
即∠FDP=∠EDP
供参考!JSWYC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点