已知f(x)=(1+lnx)/x,若X1,X2是区间[1/e,e]上的任意两个实数,求证f(x1)-f(x2)的绝对值恒小于等于1
题目
已知f(x)=(1+lnx)/x,若X1,X2是区间[1/e,e]上的任意两个实数,求证f(x1)-f(x2)的绝对值恒小于等于1
答案
f(x)=(1+lnx)/x 求导 为f~(x)=-lnx/x^2 区间[1/e,e]上 x=1时等于0 所以fx在区间[1/e,1]上单调增函数在区间[1,e]减函数若X1,X2是区间[1/e,e]上的任意两个实数,求证f(x1)-f(x2)的绝对值恒小于等于1即等价于f(1)-f(...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点