证明:方程2^x+x-2=0有且只有一个实根.

证明:方程2^x+x-2=0有且只有一个实根.

题目
证明:方程2^x+x-2=0有且只有一个实根.
答案
命题等价于 曲线 y=2^x 与 直线 y=2-x有且只有一个交点.
因为,函数 y=2^x 为在实数范围内的单调递增函数,直线y=2-x 为在实数范围内的单调递减函数,因此两线最多只有一个交点.
又因为,y=2-x过点(0,2)及(2,0),而y=2^x 过点(0,1),(2,4)
因此,直线y=2-x 与曲线y=2^x在 0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.