整系数多项式f(x)满足f(2009)f(2010)=2011,请您证明f(x)=0没有整数根

整系数多项式f(x)满足f(2009)f(2010)=2011,请您证明f(x)=0没有整数根

题目
整系数多项式f(x)满足f(2009)f(2010)=2011,请您证明f(x)=0没有整数根
答案
2011 为质数,只有 1 和 2011 两个因数
当x为整数时,整系数多项式f(x) 必为整数 ,
f(2009)f(2010)=2011
设 f(x)=0 有整数根 k
则 f(x)=(x-k) * g(x), 其中 g(x)为整系数多项式
则有 (2009-k)*g(2009)* (2010-k)*g(2010) = 2011
所以 (2009-k) , (2010-k) , g(2009) , g(2010) 都属于 {1, -1, 2011, -2011}
而 (2010-k) - (2009-k) =1
所以 (2009-k) , (2010-k) 不可能都属于 {1, -1, 2011, -2011}
矛盾!
所以 f(x)=0没有整数根
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.