用反证法证明:三角形的外角大于任何一个和它不相邻的内角.

用反证法证明:三角形的外角大于任何一个和它不相邻的内角.

题目
用反证法证明:三角形的外角大于任何一个和它不相邻的内角.
答案
设三角形ABC的任意角C的外角为角1,令角1<角A(任意不相邻内角),
因根据三角形外角等于不相邻内角和,有角1=角A+角B,又角1<角A
角1,角A,角B均>0
显然 角1=角A+角B,又角1<角A 这是不可能的,故反证法得证结论
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.