设f(x)=∫(0--sinx) ln(1+t^2)dt,g(x)=x^3+tan^4 x,则当x--0时,f(x)是g(x)的什么无穷小

设f(x)=∫(0--sinx) ln(1+t^2)dt,g(x)=x^3+tan^4 x,则当x--0时,f(x)是g(x)的什么无穷小

题目
设f(x)=∫(0--sinx) ln(1+t^2)dt,g(x)=x^3+tan^4 x,则当x--0时,f(x)是g(x)的什么无穷小
设f1(x)的一个原函数是e^2x,f2(x)的一个原函数是e^-2x,则当D时区域0
答案
1、
x趋于0时,sinx和tanx都是等价于x的,
所以此时f(x)等价于∫(0->x) ln(1+t^2)dt,
求导得到ln(1+x^2)又等价于x^2
g(x)等价于x^3+x^4,求导得到3x^2+4x^3
很显然3x^2+4x^3比x^2高阶,
所以原函数g(x)也比h(x)高阶
2、
f1(x)的一个原函数是e^2x,f2(x)的一个原函数是e^-2x
那么
∫∫f1(x)f2(y)dp
=∫f1(x)dx *∫f2(y)dy
= e^2x * e^(-2y) 分别代入x和y的上下限1和0
=(e^2 -1) *[e^(-2) -1]
=2 -e^2 -e^(-2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.