已知数列{an}a1=1/2,a(n+1)=3a(n)+1,1,证明{an+1/2}是等比数列,2,求通项公式
题目
已知数列{an}a1=1/2,a(n+1)=3a(n)+1,1,证明{an+1/2}是等比数列,2,求通项公式
答案
a(n+1)=3a(n)+1
a(n+1)+1/2=3a(n)+3/2
a(n+1)+1/2=3[a(n)+1/2]
[a(n+1)+1/2]/[a(n)+1/2]=3
所以a(n)+1/2是以3 为公比的等比数列
a(n)+1/2=(a1+1/2)q^(n-1)
a(n)+1/2=(1/2+1/2)*3^(n-1)
a(n)+1/2=3^(n-1)
a(n)=3^(n-1)-1/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点