高等数学无穷小的比较

高等数学无穷小的比较

题目
高等数学无穷小的比较
M>N>0,当X趋近于0时,证明:
o(Xˆm)+o(Xˆn)=o(Xβ)
其中,β=min{m、n}
答案
m大于n,还定义一个β干什么呢?
O(xˆm)+O(x^n)=O(x^n)
因为:[O(xˆm)+O(x^n)]/x^n=O(xˆm)/x^m×x^(m-n)+O(x^n)/x^n→0×0+0=0(x→0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.