求抛物线y=x2上一点P,使其但直线2x-y-4=0的距离最小

求抛物线y=x2上一点P,使其但直线2x-y-4=0的距离最小

题目
求抛物线y=x2上一点P,使其但直线2x-y-4=0的距离最小
答案
因为点P在抛物线上,则设P点坐标为:(x,x^2)
则它与直线2x-y-4=0的距离是
|2x-x^2-4|/√(2^2+1)=|-(x^2-2x+1)-4+1|/√5=|-(x-1)^2-3|/√5
当x=1时距离最小,则x^2=1
所以P点坐标为(1,1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.